Engaging students as partners in Learning and Teaching

Gordon Curry
Gordon.Curry@Glasgow.ac.uk

Staff-Student Partnerships

• Teaching & Learning has to be a partnership
 • not just about transmitting information (the “Sage-on-a-stage” model of teaching)
 • but also about student absorbing this information ("learning")
• A focus on both student learning and our own teaching practice requires partnership
• Many advantages, but limitations need to be understood
Advantages

• Engagement
• Workload!
• Feedback in advance
• Survey ‘satisfaction’

• Address some of the issues raised by you in the survey carried out by organisers of this workshop

Staff-Student Partnerships

• Much of the extensive literature about students and staff working together as partners relates to “student engagement”

• “The field of student engagement – theory, practice and policy – is huge [and] varied....As a concept, “student engagement” is ambiguous and contested. Within learning and teaching it can be divided into two broad areas:
 • (i) student engagement as the way in which students invest time and energy in their own learning, and
 • (ii) the ways in which students are involved and empowered by institutions to shape their learning experiences.”

• Healey, M., Flint, A., & Harrington, K. 2014 (p.15)

![Engagement through partnership: students as partners in learning and teaching in higher education](image)

![Co-learning, co-designing and co-developing](image)
An Example

Science Skills Course, University of Glasgow, 2013
Background

• Student feedback (across many sciences) – indicated that students wanted to develop and improve their problem solving skills, earlier in their academic career
• Three experienced staff (Earth Science, Chemistry & Physics & Astronomy) asked to develop a new course
• Surveys of staff and students from a range of science subjects identified a common set of topics in which most commonly struggle
• So staff defined the curriculum content, based on cumulative student & staff experience (staff front-loaded workload – course approval)

Topics

• Solving equations
• Identifying a problem
• Orders of magnitude
• Errors
• Three dimension perspective
• Team working
• Researching a topic/searching the web/referencing

• Multidisciplinary course, designed for students with a wide range of backgrounds (>40 countries, widening participation, etc.) – single course to avoid repetition in early years
The course had to focus on the teaching of fundamental skills using topics from the subjects of Astronomy, Chemistry, Earth Sciences, Geography and Physics, but is designed in such a way as to be suitable for students in all science subjects.

How to teach?

- Staff had extensive and wide-ranging experience, and could have developed a course (trial and error approach)
- But this type of course can be unpopular
- Recognised the importance and expertise students could bring to bear on the development of a science skills course.
- So recruited students to determine how to teach these topics (Learning and Teaching Development Fund) – honours students who had recent experience of the issues, but no experience of course development
“Students are rarely disciplinary or pedagogical experts, but they are experts at being students” (Cook-Sather et al, 2014)

Schedule

• Recruited Jan/Feb 2013, 8 week project over summer 2013, aimed at delivering in 2013-14 academic year
• At 1st meeting staff laid out their hopes for the project, the final goals and gave the students the outline that had been put together when applying for university funds.
• Students then left to it, with each staff member available at the end of a phone if their input was needed.
• Guidance was offered if needed but generally the students worked well together, in discussing and testing effective teaching strategies.
• Since they each had their own specialities, students effectively acted as teacher for different topics, with peers providing the “student” perspective on topics they were less familiar with.
Nothing was off bounds!

- The students were encouraged to try whatever they thought would work, and if it would ultimately prove unworkable the staff would let them know, although all student-developed materials in this project were usable.

- There were concerns that students would not feel comfortable developing course material since this was likely to be unfamiliar territory for them but the student-generated material was exemplary and the students enjoyed having the creative freedom to brainstorm ideas and develop resources accordingly.
Outcome

• The teaching materials developed by students included
 • Lectures (powerpoints)
 • Laboratory workshops (including instructor manuals)
 • Practical demonstrations
 • Team projects
 • Worked examples
 • Questions for revision sessions
 • Exam questions

Course

• ‘Gaming’ approach to workshops
• Workshops with series of short tasks, rather than one major task
• Competitive (only move to next task once previous was finished)
• Creative use of search questions (pictures, images, quotes, incomplete equations, etc.)
• The students reported *no major issues with the collaboration* activity.

• Staff had assumed that developed resources would need “polishing” to work in the course – in reality, *little additional staff effort was required to make the material ready for use.*

• Course ran for the first time in early 2014, and has grown considerably – still using original teaching materials

• Feedback was extremely positive – described as ”fun”, and “*unlike any other course*”

• Now over-subscribed every year, and facing issues with teaching large class sizes
Publication

- http://dx.doi.org/10.1080/1360144X.2015.1113969

Comments from participants

- Staff and students all felt that co-creation was most applicable to courses focused on *practice, not theory*.
 - *(But subsequently other Geoscience students ran revision sessions for classes below them, covering key facts (from the student perspective) – mutual benefit)*
- Students considered their *diverse academic backgrounds* as one of the highlights of the project.
Other comments from students

• The students valued the freedom they were given to carry out the work, using their own initiative and creativity – deliberate on the part of the staff – no “them and us”.

• Students found the more casual, informal relationship a very positive experience.

• The informal relationship was helped by the staff having worked together previously – not essential, but definitely helps.

Wide spectrum of applications – a few further examples

• Consulting students like to promote engagement, even if nothing changes (provided that there are explanations)

• Co-creation of course – as in the example & first year Geography course at UCD (Cook-Sather, 2014, p.31)

• Staff determine major themes of course, but students determine the specific focus of curriculum (Env Sci – Queen Margaret Univ, Edinburgh – Cook-Sather, 2014, p32)

• Students design their own essay – staff provides 6-8 key words, makes sure not too narrow or broad & suggests amendments if necessary – students perform better than traditional courses (Reading - Cook-Sather, 2014, p34)
Spectrum of applications

• Invite student to develop grading criteria, and once agreed used in co-assessment of essays and oral presentations (Univ of Glasgow, Cook-Sathers et al p.50)
• Many other examples – taking poorly reviewed course and transforming the student perspective
• Student volunteers assigned to work with staff on academic development (US College)
• Students appreciate consultation and their opinions being valued

Practical Strategy for starting out –
Cook-Sathers et al, 2014, chapter 7

• Start small (students involved in compiling feedback, consult students re revisions, students design course material in tutorials – beneficial even to consult but not to implement any changes)
• Be Patient – outcomes may be different than expected, may be critical, students may resist change
• Volunteers rather than compulsory participation
• Think carefully about who to involve – high achievers, subject knowledge, particular skills or perspectives?
Practical Strategy (b)

- **Work together to create a shared purpose and project**
- **Cultivate support** (consult with colleagues)
- **Learn from mistakes**
- **Give credit for working in partnership**
- **Include varied and diverse perspectives in partnerships**

What could go wrong?

- Incomplete or non-specific course specification – need to provide clear topics, goals, and what was required (the deliverables) – staff workload needs to be front-loaded
- The wrong people asked to take part in the partnership (either staff and students)
 - staff should not be controlling
 - students should have good rapport with their colleagues, enjoy working independently and as part of a team, and should be volunteers